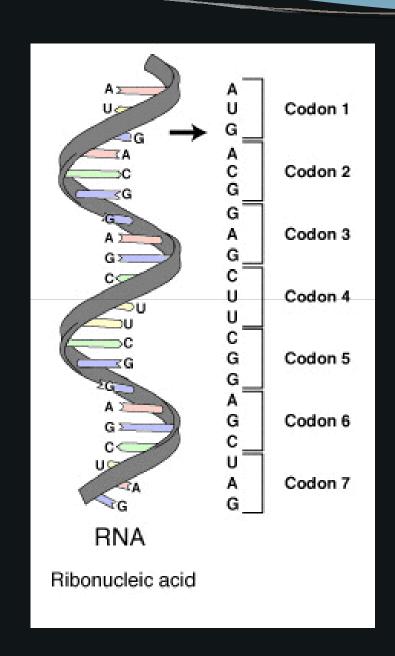
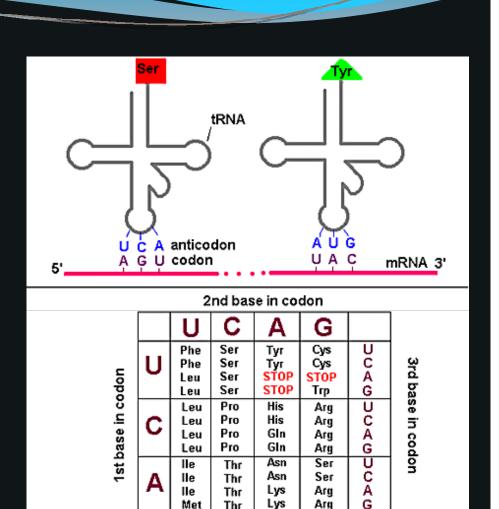
Genetic Code

By


PRAMOD KUMAR MAHISH

Asst. Professor (Biotechnology)


Govt. Digvijay P. G. College Rajnandgaon (C.G.)

Definition

- The genetic code is the set
- in which information encoded within genetic material (DNA or mRNA sequences)
- is translated into proteins (amino acid sequences) by living cells.

Biological decoding is accomplished by the ribosome, which links amino acids in an order specified by mRNA, using transfer RNA (tRNA) molecules to carry amino acids and to read the mRNA three nucleotides at a time.

Thr Ala

Ala

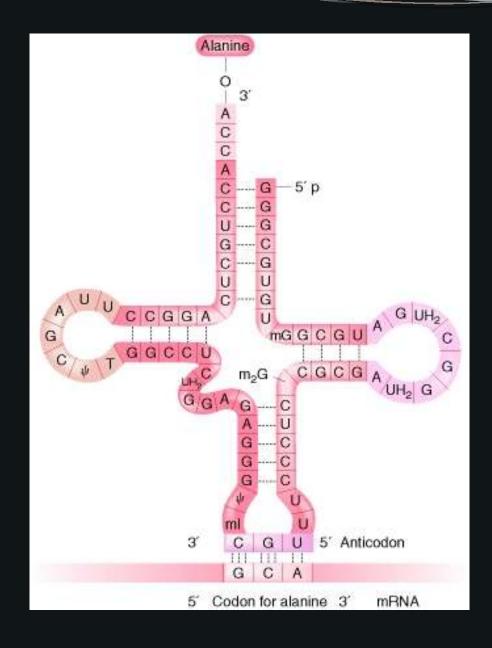
Asp

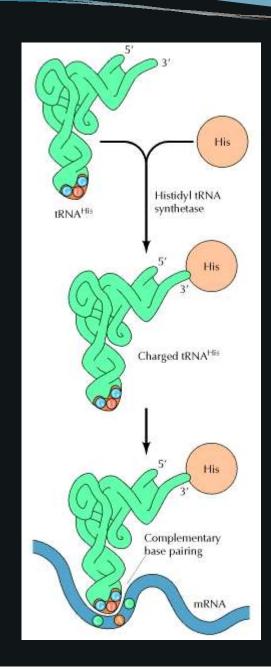
Asp

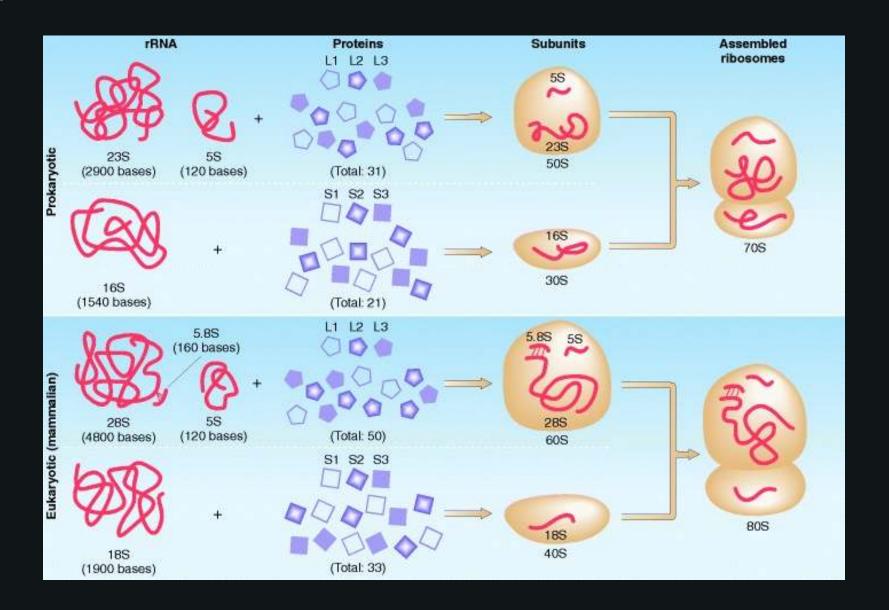
Glu

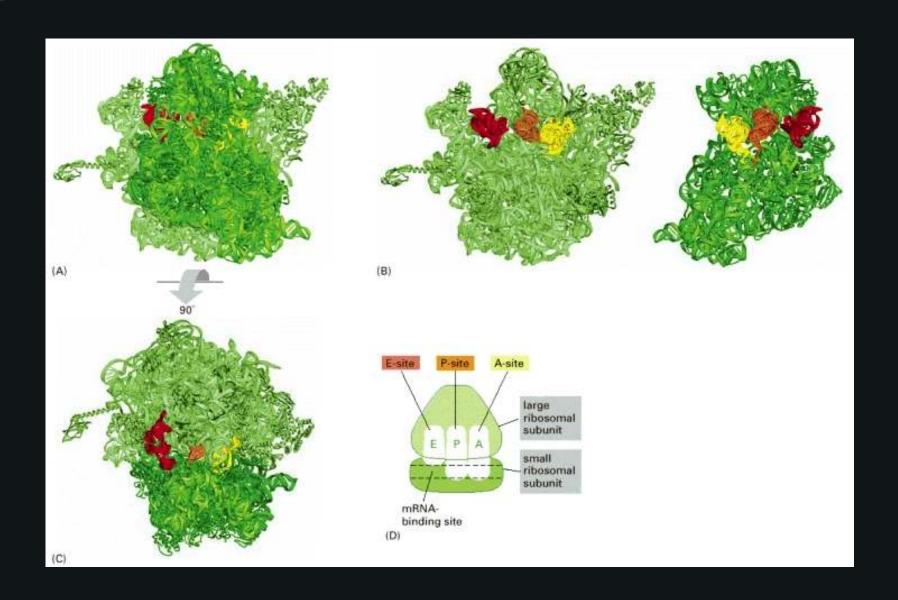
Glv

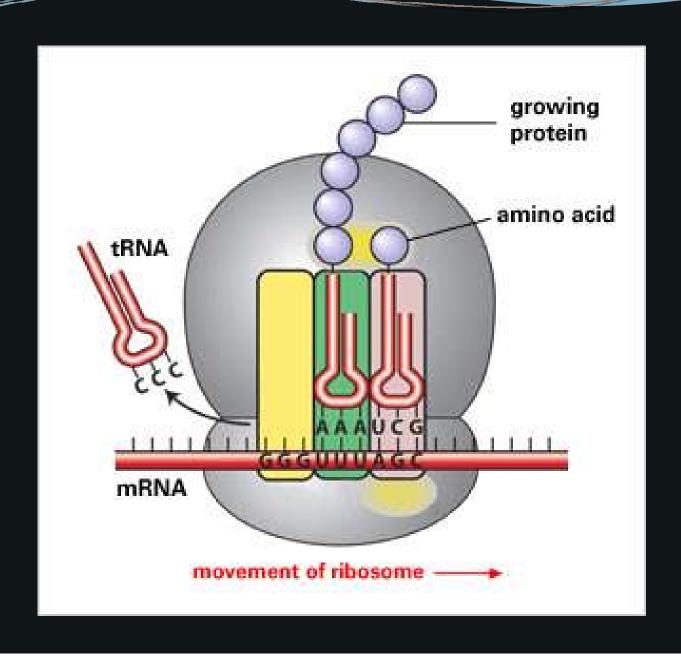
Gly

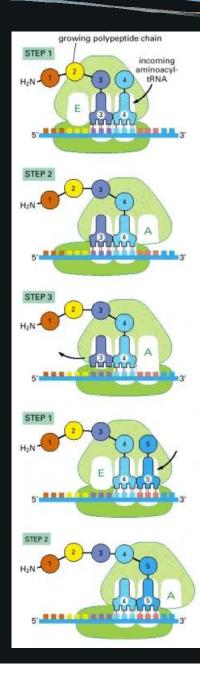

Val

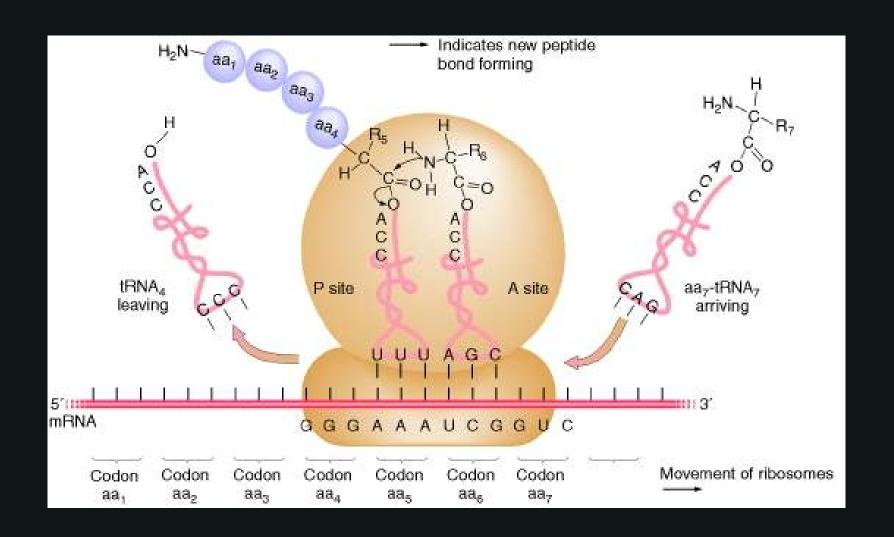

Val

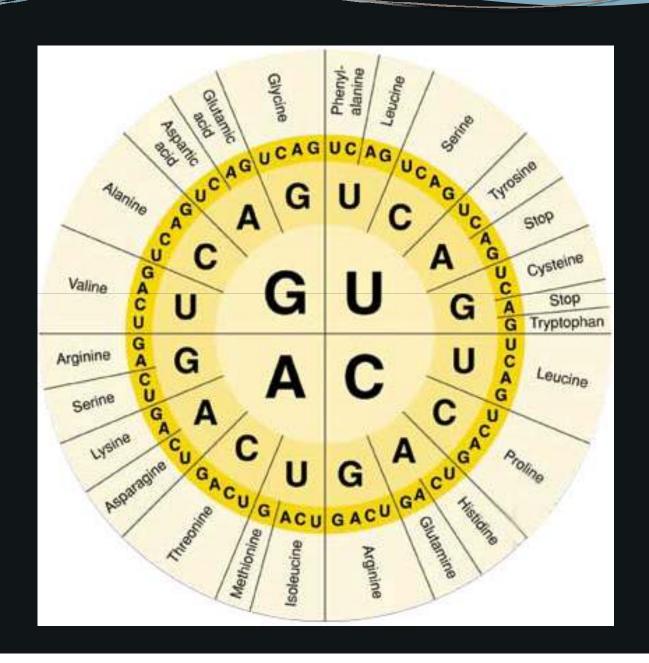

Val


The Genetic Code


U







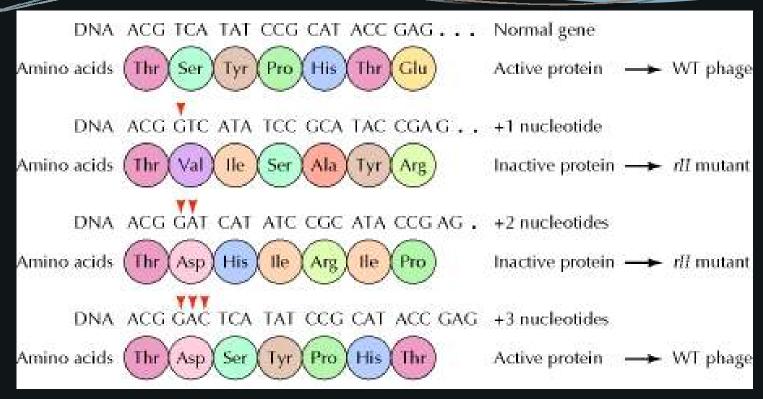
nonpolar polar basic acidic (stop codon)

Standard genetic code

1st	2nd base									
base	U		С		Α		G		base	
U	UUU	(Phe/F) Phenylalanine	UCU	(Ser/S) Serine	UAU	(Tvr/Y) Tvrosine	UGU	(Cys/C) Cysteine	U	
	UUC		UCC		UAC		UGC	(Cys/C) Cystelle	С	
	UUA		UCA		UAA	Stop (Ochre)	UGA	Stop (Opal)	Α	
	UUG		UCG		UAG	Stop (Amber)	UGG	(Trp/W) Tryptophan	G	
С	CUU	(Leu/L) Leucine	CCU	(Pro/P) Proline	CAU	(His/H) Histidine	CGU		U	
	CUC		CCC		CAC		CGC	(Arg/R) Arginine	С	
	CUA		CCA		CAA	(Gln/Q) Glutamine	CGA	(Alg/K) Algillille	Α	
	CUG		CCG		CAG		CGG		G	
Α	AUU	(lle/l) Isoleucine	ACU	(Thr/T) Threonine	AAU	(Asn/N) Asparagine	AGU	(Ser/S) Serine	U	
	AUC		ACC		AAC		AGC	(Sel/S) Sellile	С	
	AUA		ACA		AAA	(Lvs/K) Lvsine	AGA	(Ara/R) Arginine	Α	
	AUG ^[A]	(Met/M) Methionine	ACG		AAG		AGG		G	
G	GUU	(Val/V) Valine	GCU	(Ala/A) Alanine	GAU	(Asp/D) Aspartic acid	GGU		U	
	GUC		GCC		GAC		GGC	(Chy/C) Chyoino	С	
	GUA		GCA		GAA	(Glu/E) Glutamic acid	GGA	(Gly/G) Glycine	Α	
	GUG		GCG		GAG		GGG		G	

Characteristics of Genetic Code

- Composed of 4 nucleotides on mRNA (A,U,G,C)
- Read in triplets (3 nucleotides / codon)
- 3. 64 possible codons


Start: AUG (Also Met)

Stop: UAG (Amber); UGA (Opal); UAA (Ochre)

Amino Acids: 60 Codons + AUG

- 4. Code is Degenerate: >1 codon / amino acid
- 5. Code is non-overlapping
 Each nucleotide part of only 1 codon
- 6. AUG (Start) Defines Reading Frame

- The genetic code is unambiguous: each codon specifies one amino acid only
- The code is degenerate. One amino acid may be specified by more than one codon. For instance serine is encoded by six codons, glycine by four and lysine by two.
- Note that in most cases sufficient coding is performed by the first two bases, the third (or wobble) base playing a minor role. For instance the four codons that specify glycine (GGU, GGC, GGA and GGG) all start with GG.

Genetic evidence for a triplet code

A series of mutations consisting of additions of one, two, or three nucleotides were studied in the *rII* gene of bacteriophage T4. Additions of one or two nucleotides alter the reading frame of the remainder of the gene. Therefore, all the subsequent amino acids are abnormal, and an inactive protein is produced, giving rise to mutant phage. Additions of three nucleotides, however, alter only a single amino acid. The reading frame of the remainder of the gene is normal, and an active protein giving rise to wild-type (WT) phage is produced.

- The genetic code is composed of nucleotide triplets. In other words, three nucleotides in mRNA (a codon) specify one amino acid in a protein.
- The code is non-overlapping. This means that successive triplets are read in order. Each nucleotide is part of only one triplet codon.
- The genetic code is unambiguous. Each codon specifies a particular amino acid, and only one amino acid. In other words, the codon ACG codes for the amino acid threonine, and <u>only</u> threonine.
- The genetic code is degenerate. In contrast, each amino acid can be specified by <u>more</u> than one codon.
- The code is nearly universal. Almost all organisms in nature (from bacteria to humans) use exactly the same genetic code. The rare exceptions include some changes in the code in mitochondria, and in a few protozoan species.

The Nobel Prize in Physiology or Medicine 1968 Robert W. Holley, H. Gobind Khorana, Marshall W. Nirenberg

The Nobel Prize in Physiology or Medicine 1968 Robert W. Holley H. Gobind Khorana Marshall W. Nirenberg

Robert W. Holley

Har Gobind Khorana

Marshall W. Nirenberg

The Nobel Prize in Physiology or Medicine 1968 was awarded jointly to Robert W. Holley, Har Gobind Khorana and Marshall W. Nirenberg "for their interpretation of the genetic code and its function in protein synthesis".

Photos: Copyright @ The Nobel Foundation

The Genetic Code table proposed in 1965 by Khorana

The Genetic Code

1st	2nd letter							
letter	U	С	Α	G	letter			
	PHE	SER	TYR	CYS	U			
	PHE	SER	TYR	CYS	C			
U	LEU	SER	C.T.	NONS	Д			
	LEU	SER	C.T.	TRY	G			
	LEU	PRO	HIS	ARG	U			
	LEU	PRO	HIS	ARG	С			
C	LEU	PRO	GLN	ARG	А			
	LEU	PRO	GLN	ARG	G			
	ILEU	THR	ASN	SER	U			
	ILEU	THR	ASN	SER	C			
А	ILEU	THR	LYS	ARG	А			
	MET (C. I.)	THR	LYS	ARG	G			
	VAL	ALA	ASP	GLY	U			
0	VAL	ALA	ASP	GLY	С			
G	VAL	ALA	GLU	GLY	А			
	VAL (C.I.)	ALA	GLU	GLY	G			

Thank you